
Finding Interesting Rules from Large Sets of Discovered Association Rules

Mika Klemettinen Heikki Mannila Pirjo Ronkainen Hannu Toivonen” A. Inkeri Verkamo

Department of Computer Science

University of Helsinki

P.O. Box 26, FIN-00014 University of Helsinki, Finland

mannila@cs.helsin ki.fi

Abstract

Association rules, introduced by Agrawal, Imielinski, and

Swami, are rules of the form “for 90 % of the rows of the

relation, if the row has value 1 in the columns in set W,

then it has 1 also in column l?”. Efficient methods exist for

discovering association rules from large collections of data.

The number of discovered rules can, however, be so large

that browsing the rule set and finding interesting rules from

it can be quite difficult for the user. We show how a simple

formalism of rule templates makes it possible to easily de-

scribe the structure of interesting rules. We also give exam-

ples of visualization of rules, and show how a visualization

tool interfaces with rule templates.

1 Introduction

Data mzraing (knowledge discovery in databases) is a field

of increasing interest combining databases, artificial intelli-

gence, and machine learning. The purpose of data mining

is to facilitate understanding large amounts of data by dis-

covering interesting regularities or exceptions (see e.g. [1 3]).

Today, in their daily operation, enterprises and organiza-

tions gather and store huge amounts of data. Understanding

the data, or learning about the implicit information in the

data, is often important for strategic decision support or for

technical applications. Consider, for instance, how a bank or

a supermarket could utilize patterns discovered in their cus-

tomer transactions, e.g. for product decisions or marketing

or risk management, or how telecommunications network

alarms could be correlated and predicted based on regu-

larities in the alarm data. Finding interesting regularities

manually, e.g., with statistical methods, is time consuming.

As the amount of data grows fast, automatic data mining

methods are needed to promote data understanding.

Association rules, introduced recently by Agrawal,

Imielinski, and Swami [1], are a class of simple but pow-

erful regularities in binary data. An association rule of the

form W + B, where W is a set of attributes and B a single

attribute, states that in the rows of the database where the

● On leave from Nokia Research Center.

Permission to co y without fee all or part of this material is
Igranted provided t at the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
ancf/or specific permission.
CIKM ’94- 11/94 Gaitherburg MD USA
@ 1994 ACM 0-89791 -674-3/94/001 1..$3.50

attributes in W have value true, also the attribute B has

value true with high probability. However, there can easily

be hundreds or even more association rules holding in a data

set. Paradoxically, data mining itself can produce such great

amounts of data that there is a new knowledge management

problem.

In this paper we consider the problem of finding inter-

esting rules from the set of all association rules holding in

a data set. (In effect, we address a problem of data mining

of second order.) This is a generic problem in data mining

(see [12]): while formal statistical criteria for rule strength

and (statistical) significance abound, it is much harder to

know which of the discovered rules really interest the user.

Of course, this problem is quite hard.

The issue of interestingness of discovered knowledge

has been discussed in general by Piatetsky-Shapiro [12].

Hoschka and Klosgen [6] have also used templates for defin-

ing interesting knowledge, and their ideas have strongly in-

fluenced our work. Their approach is b~~ed on few fixed

statement types and partial ordering of attributes, whereas

our approach is closer to regular expressions. Han et al. [5]

present an attribute-oriented approach for pruning uninter-

esting relations. Piatetsky-Shapiro and Matheus discuss the

interestingness of deviations [14].

We show that it can be helpful to inquire the user for

some simple additional information about the structure of

the data. The basic idea is to apply templates, a form of

pattern expressions, in information retrieval from the set of

discovered rules. Templates can be used to describe the form

of interesting rules, and also to specify which rules are not

interesting. We have implemented templates in a prototype

tool for discovering and examining association rules.

The rest of this paper is organized as follows. Association

rules are introduced in Section 2, where we also discuss the

problems in managing a large set of rules. In Section 3 we

describe the use of templates, and present examples and

experience from two case studies with real data. Section 4

investigates how visualization can aid in managing rules.

Section 5 is a short conclusion.

2 Association rules and their properties

First we introduce some basic concepts, using the formal-

ism presented in [1]. Let R = {~], Iz, 1,~} be a set of

attribute=, also called item=, over the binary domain {O, 1}.

The input r = {tl, tn} for the data minmg method is a

relation over the relation schema {11, 12, 1~}, i.e., a set

of binary vectors of size m. Each row can be considered as

a set of properties or items (that is, t[z] = 1 + 1, c t).

401

Let W ~ R be a set of attributes and t c r a row of

the relation. If t[A] = 1 for all A c W, we write t[w’] = i.

.kn association rule over r is an expression W’ + B, where

TV ~ R and B c R \ W. Gwen real numbers ~ (confidence

threshold) and a (support threshold), we say that T satisfies
Jt~ + B with respect to y and ~, if

]{2 \ t,[WB] =-i}l > an

and
l{~l~t[wq=i}l

I{il t,[W]= i}l 27’

That is, at least a fraction u of the rows of T have 1‘s in all

the attributes of W B, and at least a fraction y of the rows

having a I in all attributes of W also have a 1 m B. Given a

set of attributes .Y, we say that X is couermgl (with respect

to the database and the given support threshold cr), if

l{, [t,[x] = i}] ~ an.

That is, at least a fraction a of the rows in the relation have
I ‘S in all the attributes of X.

Example 1 In a course enrollment database, the associa-

tion rule

Introduction to Unix + Programming in C

(0.84, 0.34)

states that 84 % of the students that have taken Introduction

to Untx, also have taken Programmmg m C, and that 34 %

of all the students actually have taken both courses. ❑

Given u and ~, the collection of all association rules that

hold in a data set can be computed efficiently [1, 2, 9].

These algorithms work in time proportional to the size of

the database and the number and size of covering subsets.

Specifically, one can find all covering subsets reasonably fast.

Additionally, one can obtain good approximations to the col-

lection of association rules by using reasonably small sam-

ples [9]; the data sets of our case studies are representative

of reasonable sample sizes.

The set of all association rules holding in a data set pro-

vides a wealth of information about the data. For example,

for all attributes we obtain all possible rules that explain the

presence of the attribute. This can be contracted to several

other machine learning or data mining methods (e.g., de-

cision tree learning) that provide only one explanation or

rule (the one chosen by the heuristic methods) for a given

target attribute. On the other hand, several of the rule for-

malisms used in machine learning are much more powerful

than association rules.

As the target of discovery is not fixed, association rules

can reveal valuable. unexpected information. This strength

c,f association rules has a drawback: there can be quite many

rules holding with sufficient strength in the data set.

Example 2 ‘The data set of one of our case studws zs an

enrollment database of courses m computer sczence. The

data set consists of registration tnjormation of 1066 students

who had registered for at least two corrr-ses. There is a row

per student, containing the courses the student has registered

for. On average, a row has 5 courses. The total number of

courses 2s 11,?.

The goal in analyzzng this data is to obtazn accurate and

useful information about the interrelataonshaps between en-

rollments of various courses. Such relationships can be quite

1A~rawal et al [1] use the term large

complex, but they can be valuable, e.g., tn the plannzng of the

curriculum and in allocating resources. Standard statzstzcal

techniques and packages seem qutte weak tn finding some of

the unexpected connections m thts t~pe of data, although the~

arc uery good tn analyzing the connections, once they hauc

been pointed out or discovered.

We used thzs data to jind association rules with the al-

gortthm represented zn /9]. Wzth support threshold a = 0.01

(corresponding to 11 students) there am 2010 association

rules (with confidence threshold y = 0.00). The largest left-

hand sade oj a rule consasts of 4 courses. With confidence

threshold = 0.7, there are stdld20 rules, and with y = 0.9,

99 rules. n

One of the basic problems in data mining is to know

what interests the user. The confidence threshold ~ and

the support threshold u ensure that the discovered rules

have enough positive evidence. However, a given relation

may satisfy a large number of such association rules. To be

useful, a data mining system must manage the large amount

of generated information by offering flexible tools for further

selecting rules.

Example 3 Our other case study ts a database of computer

equipment orders from a factory to retail sellers. There are

524 orders, each to one customer, with 1 - 11 htgh level

package identtjiers, and on average 12.4 modules. On av-

erage, the 524 ltnes contain 15.2 attributes, and the total

number of attributes M 894.

The analysts of this kand of data could be useful for deca-

sion support m the factory: e.g. designang new packages of

modules, planning and directing marketang actions, or learn-

ing more about retail seller profiles.

The data has some speczal properties. First, there

are attributes of different types (customer, package, mod-

ule). Second, there are strong associations: a package al-

ways contains certain modules. For instance, the pack-

age d86SX25modelA contains e.g. modules PowerSupplyM,

FloppyDiskDrtveN, and SystemBoardd86SX250. Whenever

the package occurs on a row, also the corresponding modules

occur. The rows in the database look like the following:

Acmelnc, 486 SX25modelA. PowerSupplyM, Floppy-

DiskDriveN, SystemBoard486SX250, MouseP.

HardDiskDriveQ. HousingR, DisplayS

With support threshold a = 0.06 (32 orders) there are

4817 association rules. Of these rules, 4468 have confidence

of 0.7 or more, 3724 have confidence of 0.9 or more, and

3543 rules have confidence of 1.0. The largest rules have 8

attributes on the left-hand s~de. o

By setting the thresholds a and ~ sufficiently high, it

may of course be possible to obtain a rule set with only a few

rules. For instance, only 22 rules of the computer equipment

database have support of 0.2 or more. The problem with this

method is. however, that such pruning often loses important

information. In this case the support threshold a = 0.06 is

justified: rules valid in about 30 orders are still interesting.

On the other hand, not all rules with high confidence and
support are interesting, Rules can fail to be interesting for

several reasons.

● A rule can correspond to prior knowledge or expecta-

tions.

The course enrollment database, for instance. satisfies

a number of rules that correspond to normal process

in the studies. Basic courses are taken before graduate

courses, so the following kind of rules are expected:

Design and Analysis of Algorithms (graduate

course) ~ Fundamentals of ADP (basic course)

(0.97, 0.03).

Or, the computer equipment database contains a num-

ber of strong associations between packages and mod-

ules. Discovering and presenting these known associa-

tions is a nuisance.

● A rule can refer to uninteresting attributes or attribute

combinations. E.g., the rule

Fundamentals of ADP (basic course) ~

Programming in Pascal (basic course)

(0.95, 0.60)

is useless, if the user is only interested in graduate

courses.

Or, in the case of the computer equipment database,

the user may be uninterested about a certain retail

seller, and would like to filter out all rules that make

statements about it.

o Rules can be redundant. For example, the latter of

the following rules has no additional predictive power

over the first one, and could be pruned as redundant:

Data Communications, Programming in C ~

Unix Platform (0.14, 0.03)

and

Data Communications, Programming in C, In-

troduction to Unix + Unix Platform

(0.14, 0.03).

Or, if a package identifier is on the right-hand side of a

rule induced from the computer equipment database,

then there certainly exist similar rules, but with the

modules of the package on the right-hand side.

The problem we consider in this paper is essentially how

to find the most interesting rules. We suggest that this is

done by giving the user a possibility to specify classes of

both interesting and uninteresting rules.

Hoschka and Klosgen deal with the problem of redun-

dancy in their Explora system [6]. It uses partial orderings

of attributes and attribute sets to avoid presenting several

types of redundant knowledge. However, the two parame-

ters of association rules — confidence and support — make

it more difficult to define sensible limits and semantics for

redundancy.

We also consider the presentation of rules so that it would

be easy to find the most interesting ones.

3 Selecting interesting rules

Interesting and uninteresting classes of rules can be spec-

ified with templates. Templates describe a set of rules by

specifying what attributes occur in the antecedent and what

attribute is the consequent. First, attributes are classified

to a class hierarchy by the user.

Example 4 In our example domatn of computer sctence
course enrollment, the courses are divided mto three classes:

baste, undergraduate, and graduate courses. In addition, all

courses belong to the parent class ‘any course ‘. Thus. roe

have such generalizations as

{Fundamentals of ADP. Programming in Pascal, In-

formation Systems} C Basic Course C Any Course.

{Artificial Intelligence. Programming in C. Data

Commurucations} C Undergraduate Course C Any

Course,

{Design and Analvsis of Algorithms, tJser Interfaces.

Neural Networks } C Graduate Course C Any Course.

u

Now, a template is an expression

A]....,Ak~Ak+l,

where each A, is either an attribute name. a class name, or

an expression C+ or C*, where C is a class name. Here

C+ and C* correspond to one or more and zero or more

instances of the class C, respectively. A rule

B1....,Bh~Bh+~

matches the pattern, if the rule can be considered to be an

instance of the pattern.

Example 5 The user w interested m the course Design and

Analysis of Algorithms. In particular, tt would be inter-

esting to know associations where Destgn and Analysis of

Algorithms is on the right-hand sade and there is another

graduate course on the left-hand side, such as

Neural Networks + Design and Analysis of Algo-

rithms (0.48, 0.02)

or

Artificial Intelligence. Stringology + Design and

Analysis of Algorithms (0.65, 0.01).

Such rules match the pattern

Graduate Course, Any Course* ~ Design and Anal-

ysis of Algorithms.

❑

With templates, the user can explicitly specify both what

is interesting and what is not. To be interesting. a rule has

to match an inclusive template. If a rule, however, matches

a restrzctwe template, it is considered uninteresting. To be

presented to the user, a rule must be interesting — i.e. match

one of the inclusive templates — and it must not be uninter-

esting — i.e. not match with any of the restrictive templates.

Example 6 Using the mclustve template

Graduate Course, Any Course* + Design and Anal-

ysis of Algorithms.

the user obtatns a number oj rules. The user may consider

some of them uninteresting, such as those ancludang basic

courses:

Compilers. Introduction to ADP + Design and Anal-

ysis of Algorithms (0.16, 0.01).

By adding a restrtctavc template

Basic Course. Any Course* * Any Course

the user can filter out all rulrs wath at least a ba.nc course.

on the left-hand side.

403

There are 15 rules that match the above speca$cattons

and have confidence oj 0.2 or more and support of 0.01 or

more. The rules menhoned in the prevtous example are two

oj them. Thw sort of rules gave an idea what the students

do except for taking Deszgn and Analysts of Algortthrns, and

the discovered rules can be utdazed when planning the course.

(Remember, the arrow tmplie. no temporal order. But, with

the enrollment data, the arrow tends to point backwards an

tame.) n

Example 7 On the other hand, what rules follow, if Deszgn

and Analysis of Algorithms M on the left-hand szde? Uswsg

the anclusiue template

Design and Analysis of Algorithms, Any Course* +

Any Course

and the restrzctave templates

Basic Course, Any Course* + Any Course

and

Any Course. 3 Basic Course

on? obtaans rules wzth Destgn and Analysts of Algorithms on

the left szde and wathout any baste courses.

Agazn, with confidence threshold of 0.2 and support

threshold of 0.01, there are ,J7’ such rules. One of them states

that 60 % of students takzng Design and Analysts of Algo-

rzthrns also have taken Artzfictal Intelligence.

Another rule is

Design and Analysis of Algorithms + Neural Net-

works (0.22, 0.02).

Thus, only 22 % of students takang Design and Analysts of

.41gorzthms also take Neural Networks; on the other hand,

above zt was found that 48 % of students taking Neural Net-

works also take Des~gn and Analysas of Algorithms. ❑

A common problem in knowledge discovery is the use of

background knowledge. With association rules, restrictive

templates can be employed as a mild form of utilization of

existing knowledge: they are especially handy for filtering

out rules known beforehand.

Example 8 The restrzct~ve template

Package a Module,

an conjunction with the computer cquzpment database, filters

out all dependencies between packages and thetr modules.

Thas template prunes 136 rules, 108 out of which present

normal package configurations and have confidence of 1.0.

Wath thzs ktnd of general template the user may also lose

unknown associations between packages and modules that do

not belong to the part~cular package. A more accurate dts-

tanction can, of course, be achteued by uszng a number of

more specijic restrictive templates. n

A high level classification of attribute types can be useful

for selecting certain types of rules.

Example 9 The user is interested zn rules about the cus-

tomers (retail sellers). The zncluslue templates

Any ~ Customer

and

Customer ~ Any

select all rules that are about customers and have exactly one

attribute on the Je,ft-hand szde.

In our database we found, for znstancej strong bzases an

selling packages to retad sellers, and a dozen of modules that

are sold to only one particular retail seller. 12

Example 10 The znclusive template

Module ~ Mouse

gwes 8 rules from the computer equapment database wtth

confidence of 1.0.

Surprtsmgly, there are certazn power supplies and hous-

angs always sold with a mouse. These rules may be valuable

for future product deczstons about package contents. ❑

Often, the most interesting association rules are those

revealing unexpected information. In order to spot the in-

teresting rules, the management of a large set of discovered

rules must first be solved. Templates are one way of focus-

ing the search in the potentially large space of rules. In the

next chapter, we discuss visuahzation of rules as a comple-

mentary means of managing discovered rules.

4 Visualization of association rules

We now give a short description of “Rule Visualizer”, a pro-

totype tool under development for management of discov-

ered association rules with the aid of templates and visual-

ization. Rule Visualizer consists of three components: Rule

Selection, Rule Browsing, and Rule Graph. The Rule Se-

lection component is a tool for specifying the criteria for

rules to be presented. It also includes the association rule

discovery capability (see [9] for the algorithms). The Rule

Browsing component is used for presenting rules separately,

and the Rule Graph component visualizes a set of rules as

a dependency graph.

Figure 1 presents the Rule Selection tool of Rule Visu-

alizer. With it the user can specify e.g. the confidence and

support thresholds, and a lower limit for their product —

or commonness p. Commonness threshold can be used, e.g.,

to avoid rules with both low confidence and low suppo~t.

Rule size and the maximum number of rules to show can be

limited. Finally, inclusive and restrictive templates can be

specified.

The two other components, Rule Browsing and Rule

Graph, present rules visually. It is difficult to visualize as-

sociation rules without loosing any essential information —

although visualization has been studied extensively, there

seem t,o be no results directly applicable to complex many

to one relationships with weights.

The intended basic strategy in using Rule Visualizer is

the following. First, association rules are discovered from

the data, with support threshold as low as is appropriate,

and confidence threshold O. Next, with the Rule Selection

tool, the user can refine the thresholds (but only upwards)

and enter inclusive and restrictive templates. Now the user

can view the first approximation of the set of interesting

rules with Rule Browsing and Rule Graph components.

With a mouse the user can edit the graph presentation and

refine the templates. The user can also modify the thresh-

olds and templates in the Rule Selection tool Through the

iterative process of refinements and experiments, the user

can navigate in the space of rules.

404

File Rules Presentation Help

Selection criteria:

@ confidence m
Osupport m
@commonness m
0 rule size EEI=J31

@ rules to show m
Templates:

Inclusive:

H

A

Graduate Course, Any Course* =>
Design And Analysis of Algorithms v

Restrictive:

H

A

Basic Course, Any Course* =>
Any Course v

mDo ElBrowse
m

View file: c:\datamineVmokesults\rules.all

Figure 1: Rule Visualizer / Rule Selection.

4.1 Single rules

We start the discussion of visualization with the problem of

showing single association rules to the user so that finding

interesting rules is as easy as possible. The trivial method

is to use a textual representation. It is obvious, however,

that glancing at a long list of rules hardly gives a useful

overview of them. Reading even a list of only a few dozen

rules is tedious. And. even with reasonable confidence and

support thresholds and templates, there can be hundreds or

thousands of rules.

For single rules we visuahze only confidence and sup-

port; the attributes are perhaps best visualized in a net-

work presentation with several other rules. Figure 2 is an

example of bar graph presentation. The leftmost and right-

most bars represent the confidence and support of the rule,

respectively, while the middle bar represents the common-

ness. The number of attributes on the left-hand side of the

rule is indicated in the circle by the bar graph.

Another way to visua.hze rule significance is to create

rectangles in which one side represents the confidence and

the other side the support of a rule. Thus, the area of the

rectangle represents the commonness of the two values. Also

the Kiviat graphs [7, 8] could be useful for rule visualization.

With the Rule Visualizer, the user can browse the rules

in different modes: in textual, graphical, or combined mode

(Figure 3). The graphs give a rough idea of the confidence

and support even with a quick glance. Also, sometimes

the user can find interesting rules simply by looking at the

graphical patterns. Often, it is efficient to combine the tex-

tual and graphical representations of the rules. The user can

first select interesting rules using their graphical patterns —

which is a fast way to pick up exceptional cases — and then

refine the selection in textual mode.

(b)

L-J=@

(c)

Figure 2: Example bar graphs.

405

I Number of selected rules: 47 1A

I

Figure 3: Rule Visualizer / Rule Browsing.

Example 11 Assume roe have three rules with the represerz-

tations in Figure 2?. Graphs (a) and (c) represent rules with

very high and low confidences, respectively. The advantages

of the graphical representation are clear when compared to a

textual representation:

4.2

Distributed Operating Systems. Introduction tO Unix

* Programming in C (0.96, 0.02)

Database Systems II, OODB ~ Programrni ng in C

(0.53, 0.02)

Data Communications, Introduction to Unix +

00DB (0.10, 0.02)

n

Showing several rules simultaneously

Visualizing a set of association rules is, of course, much

harder than showing a single rule. Basically, the problem
is to visutilze a hypergraph, where an edge consists of all
the attributes appearing in a rule, and each edge has a dis-

tinguished vertex (the attribute of the right-hand side) and

two weights (support and confidence). The wide research in

drawing and visualizing ordinary graphs shows that even

that problem is by no means easy (see e.g. EDGE [1 I],

DAG [4], or [15]); thus for the much harder problem of visu-

alizing weighted hypergraphs we must be content with fairly

simple solutions.

We concentrate on an attribute graph model; simpler

graphical alternatives include techniques such as the tree

model [10, 16]. The basic idea of the graph model is to

represent attributes as nodes and associations as directed
arcs (see Figure 4). The thickness of an arc represents the

confidence or support of the corresponding rule. Colors can

be used for visuahzing additional information,

Node placing is a hard problem. Irrespective of the al-

gorithm, even with a relatively small amount of attributes

and association rules, the graph easily becomes very dense

and hard to graph.

Rule Visualizer offers several ways to reduce the comp-

lexity of the graphical representation, The most important

of them is the template mechanism, which offers a way of

limiting the number of displayed rules. In the Rule Graph

tool of Rule Visualizer, the user can manipulate rule tem-

plates directly using the graphical representation. Deleting

a node from a graph equals to entering two restrictive tem-

plates: one with the attribute on the left-hand side and an-

other with the attribute on the right hand side. In Figure 4,

1A

[

Figure 4: Rule Visualizer / Rule Graph.

attributes E through J have been removed. Similarly, nodes

can be marked interesting; this corresponds to the addition

of two inclusive templates.

A simple but very powerful and useful way to limit the

complexity is to let the user limit the rule sizes. For instance,

the user may choose to view only rules with at most, two left-

hand side attributes.

Joining nodes is a third way to reduce complexity. The

user can join nodes — typically a strongly connected cluster

of them — to be represented by a single node of combined

effect. If a node is joined with another node it is not obvious

which of the connections of the joint node are strong enough

to be visualized.

One way to reduce complexity is to use a variation of

the so-cafled Spiders technique [3]. This technique allows

multiple instances of some nodes. A special case would be

to use separate nodes for the left-hand side attributes and

the right-hand side attributes. Further on, in these cases, it

could be possible to ‘organize the nodes so that the left-hand

sides of the rules are on the left and the right-hand sides on

the right on the screen. However, the network effect would

not be visible. We do not yet have the empirical evidence

on the usefulness of such techniques.

5 Concluding remarks

Association rules are a simple and useful form of knowledge

that can be efficiently discovered from large data sets. The

collection of all association rules that holds in a given re-

lation provides a lot of information about that data. The

problem with this data mining technique is that the collec-

tion of all rules is typically very large, especially when one

is interested also in the behavior of small subgroups of the

original data set.

We have considered the problem of finding interesting

rules from the collection of all association rules. Our starting
observation is that although pruning based on the support

and confidence thresholds is effective, it fails to take into

account special interests or domain knowledge. We have

described how the simple idea of classifying the attributes

of the original data set to an inheritance hierarchy, and using

templates defined in terms of that hierarchy, can be used to

prune the rule sets effectively and according to the user’s

intuitions.

We have implemented and experimented with the tem-

plate mechanism, and it has proved useful. We are currently

working on a prototype system that also supports visualiza-

406

tion of single rules and small rule sets.

A problem that remains is redundancy. Large amounts of

rules could potentially be pruned, if there were appropriate

ways to remove redundant or nearly redundant rules. Tem-

plates could be utilized also in a couple of other ways. TO

give an approximate order of interestingness to the discov-

ered rules, inclusive templates could be given weights. Or,

template-like high level rules could be used to summarize

rules or to present more general knowledge. Automatic for-

mation of clusters of strongly connected components would

be a useful feature, especially for reducing the complexity of

rule graphs.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Rakesh Agrawal, Tomasz Imielinskij and Arun Swami.

Mining association rules between sets of items in large

datab~~es. In Proceedings of the 1993 International

Conference on Management of Data (SIGMOD 93),

pages 207 – 216, May 1993.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algo-

rithms for mining association rules m large databases.

In VLDB ’94. September 1994.

G. H. Collier. Thot-11: Hypertext with explicit seman-

tics. In ACM Hypertext ’87 Proceedings, pages 269 -

289, Chapel Hill, North Carolina, November 1987.

E. R. Gansner, S. C. North, and K. P. Vo. DAG
— a program that draws directed graphs. Sojtware—

Practice and lhperierzce, 18(1 1):1047 – 1062, November

1988.

Jiawei Han, Yandong Cai, and Nick Cercone. Knowl-

edge discovery in databases: an attribute-oriented ap-

proach. In Proceedings of the 18th International Con-

ference on Very Large Databases (VLDB), pages 547-

559, August 1992.

Peter Hoschka and Wilh Klosgen. A support system

for interpreting statistical data. In Gregory Piatetsky-

Shapiro and William J. Frawley, editors, A_norvledge

Dtscovery in Databases, pages 325 – 345. AAA1 press

/ The MIT Press, Menlo Park, CA, 1991.

K. W. Kolence. The software empiricist. Performance

Evaluation Review, 2(2):31 -36, 1973.

K. W. Kolence and P. J. Kiviat. Software unit profiles

and Kiviat figures. Performance Evaluation Revzew,

2(3):2 -12, 1973.

Heikki Mannila, Hannu Toivonen, and A. Inkeri

Verkamo. Efficient algorithms for discovering associa-

tion rules. In Usama M. Fayyad and Ramasamy Uthu-

rusam$y, editors, AAAI Workshop on Z{nowledge Dis-

covery in Databases, pages 181 – 192, Seattlej Wash-

ington, July 1 ‘394.

S. Moen. Drawing dynamic trees. IEEE Software,

7(4):21 -28, July 1990.

F. N. Paulisch and W. F. Tichy. EDGE: An ex-

tendible graph editor. Softtvare-Practzce and Expe-
rience, 20(S1):63 – 88, June 1990.

[12]

[13]

[14]

[15]

[16]

Gregory Piatetsky-Si~apiro. Discovery, analysis. and

presentation of strong rules. In Gregory Piatetsky-

Shapiro and William J. Frawley, editors, {(now ledge

Dzscovery an Databases, pages 229 – 248. AAAI press

/ The MIT Press, Menlo Park, CA. 1991.

Gregory Piatetsky-Shapiro and William J. Frawlev, ed-

itors. Knowledge Dascovery in Databases. AAA1 Press

/ The MIT Press, Menlo Park, CA, 199].

Gregory Piatetskv-Shapiro and Christopher J.

Matheus. The interestingness of deviations. In Us-

ama M. Fayyad and Rama.samy Uthurusamy. editors,

AAAI Workshop on I{nowledge Discovery an Databases,

pages 25-36, Seattle, Washington, July 1994.

L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spi-

rakis , and A. Tuan. A browser for directed graphs.

Software—Practice and Experience, 17(1):61 – 76, Jan-

uary 1987.

J. Q. Walker II. A node-positioning algorithm for

general trees. Software—Practace and Experience,

20(7):685 -705, July 1990.

407

