Cyber Home School

Courseware --- Computer Graphics Collaborative Learning

Event types of nature

Nature Code	Functions
$\mathrm{C}=$ Collaboration	Grouping
I = Individual	
D = Duration	$3 \sqrt{2} \text { Logout Timeout idle time Quick hits }$
A = Concepts	$\mathrm{T}=$ Theory $\quad \mathrm{R}=$ Reference $\quad \mathrm{W}=$ Courseware Information
$\mathrm{B}=$ Technique	$\mathrm{V}=$ Video $\quad \mathrm{S}=$ Skill

Session rate of event weights

Nature Code	Micro-session Rate
$\mathrm{C}=$ Collaboration	Grouping $=0.6$ e-mail $=0.4$ Meeting room $=0.8$ Forum $=0.2$
I = Individual	Profile $=0.4$ Polling $=0.6 \quad$ Self quiz $=0.8 \quad$ Submit works $=0.2$
D = Duration	Login $=0.2$ Timeout $=0 \quad$ idle time $=0 \quad$ Quick hits $=0$
A = Concepts	Theory $=0.6$ Reference $=0.2$ Courseware Information $=0.4$
$\mathrm{B}=$ Technique	Video $=0.6$ Skill $=0.4$

Temporal Database of user-tracking

Event id	User id	Timestamp	Click from	Referrer
22345	101	20030620160000	S 21	t 12
22346	101	20030620160100	t 12	cmi

NB:- $\mathrm{S} 21, \mathrm{t} 12, \ldots$ are HTML page codes.
cmi, cmo, \ldots are communicative sessions.

Web log techniques

- Click tracking of user
- Timeout timestamp
- Referrer timestamp
- Full-loaded timestamp

Model domains

- Time: $\mathrm{t}($ page, browsing duration $)=\mathrm{t}(\mathrm{p}, \mathrm{b})$

Weight: W(page, frequency of hits) $=w(p, f)$
Event structure: $\mathrm{S}($ weight, time, nature $)=\mathrm{S}(\mathrm{w}, \mathrm{t}, \mathrm{n})$
Tri-event relationship: R (pre-event \rightarrow event, event \rightarrow post-event) $=\mathrm{R}$ (pe, ep)
Mutual tri-event association: M (pre-event \rightarrow post-event) $=\mathrm{M}(\mathrm{pp})$
e-sequence $=\left\langle e_{1}, e_{2}, e_{3}, \ldots\right\rangle$, where $e_{1}\left(w_{1}\right), e_{2}\left(w_{2}\right), \ldots$
e.g. e-sequence $=$ B A C C I $\ldots, \mathrm{B}(0.43) \mathrm{A}(0.74) \ldots$

Framework

Time partitioning and sequence weighting of temporal data by using fuzzy rules
Multiple granularities

- Fuzzy Association Rules
- Preprocessing weblog data
(Reduction of event sequence and weights assignment by using type-2 Fuzzy logic)

Event pattern matching of temporal sequence

Sequence comparison
Dynamic programming
Multiple sequence alignment

- Shortest Superstring of SBH (Sequencing by Hybridization)

Equivalent sequence transformations

Mutual relationships of tri-event pattern in sub-sequence

Comparison of good/bad tri-event patterns

- Frequent sequential pattern finding (tri-event)

Longest common sub-sequence
Sequential events prediction

- Sequence reconstruction (Hamiltonian path, Eulerian path, False negative errors)

Viterbi algorithm (hamming distance) + Transformational grammar
Sequential event network (Scoring paths in spectrum graphs)

Keywords:

Temporal data, Evolutionary Codes = Artificial DNA, Sequencing by Hybridization (SBH), Bioinformatics Computing, DNA array, Viterbi algorithm, Transformational grammar, Superstring, Fuzzy Association Rules, Personalization,

Strategy of temporal mining

Learning Sequence Planning
Tri-event codes: $\{$ A , B , C , D , I $\}$ 125triplets

A										A.	B	C
AA	AAB	AAC	AAD	AAI	B	C	D	I				
ABA	ABB	ABC	ABD	ABI								
ACA	ACB	ACC	ACD	ACI								
ADA	ADB	ADC	ADD	ADI								
AIA	AIB	AIC	AID	AII								

Shortest Superstring

e.g. set of strings:

$$
\{000,001,010,011,100,101,110,111\}
$$

concatenation superstring: 000001010011100101110111

Shortest Superstring:

$$
\begin{aligned}
& \quad 1 \quad 010 \\
& 00110^{0} \\
& 00001110100 \\
& 0001 \\
& 00111 \\
& 101 \\
& 100
\end{aligned}
$$

Shortest Superstring of $\{\mathrm{ABCDI}\}$?

