
1
1

Frequent Itemset Mining Revisited

April 21, 2004

Lu Hongjun，HKUST
Email: luhj@cs.ust.hk

URL: http://www.cs.ust.hk/~luhj

H. Lu/HKUST 2

Outline

Background
Previous work
SSP: scalable mining of frequent itemsets
CFP-tree: storing and querying frequent itemsets
Summary

2
2

H. Lu/HKUST 3

Frequent Itemset Mining: Motivation

Frequent itemset: pattern that occurs frequently in the
database
Applications

Market-basket data analysis
Web log mining
DNA sequence analysis

Foundations of many data mining tasks
Association rule, correlation
Associative classification
Sequential patterns, temporal or cyclic association, partial
periodicity patterns, episodes
Iceberg cube computation

H. Lu/HKUST 4

Frequent Itemset Mining: Problem Statement

Given
A set of items Ι = {a1, a2, …, an}
A transaction database D = {t| t ⊆ Ι}.
support (p) = || {t| p ⊆ t} || .
minimum support threshold min_sup

Output
Every itemset p such that support(p)/||D|| >= min_sup

Apriori property (anti-monotone property)
If an itemset is not frequent, then none of its superset can be
frequent

3
3

H. Lu/HKUST 5

Frequent Itemset Mining: An Example

40%

TID Transactions
1 a, b, c, f, m, p
2 a, d, e, f, g
3 a, b, f, m, n
4 a, c, e, f, m, p
5 d, f, n, p
6 a, c, h, m, p
7 a, d, m, s

Frequent Itemsets
c:3, d:3, p:4, f:5, m:5, a:6
cp:3, cm:3,ca:3, pf:3, pm:3,
pa:3, fm:3, fa:4, ma:5

cpm:3, cpa:3, cma:3,
pma:3, fma:3

cpma:3

Transaction database

H. Lu/HKUST 6

Frequent Itemset Mining: Challenges

Challenge
The size of search space is exponential to the number
of items in the database

Typical approaches
Candidate generate-and-test approach
Filter-and-refine approach
Vertical Mining approach
Pattern growth approach

4
4

H. Lu/HKUST 7

Candidate Generate-and-test Approach

Basic Apriori algorithm [VLDB’94]
scan database and count frequent 1-itemsets
In subsequent iterations

• Pairs of frequent k-itemsets are joined to form candidate (k+1)-itemsets
• Scan database to verify candidate (k+1)-itemsets and generate frequent

(k+1)-itemsets.

Drawbacks
Scan database multiple times

• equal to the maximal length of frequent itemsets

Generate and test a large number of candidate itemsets
• Subset matching is expensive

H. Lu/HKUST 8

Speeding up Apriori algorithm
DHP [SIGMOD’95]

prune candidate itemsets using hashing
trim both number of transactions and number of
items in each transaction after each iteration

DIC [SIGMOD’97]
count support for an itemset shortly after all of its
subsets are proved to be frequent rather than wait until
next database scan

In worst case, the number of database scan is still
equal to the maximal length of frequent itemsets

5
5

H. Lu/HKUST 9

Filter-and-refine Approach
Framework

In the filter phase, generate candidate itemsets
In the refine phase, scan database to verify the
validity of each candidate itemsets
Usually scans database only twice

Drawbacks
Generate and test a large number of candidate
itemsets
The number of candidate itemsets generated can
be larger than that of the basic Apriori algorithm

H. Lu/HKUST 10

Filter-and-refine Algorithms
Partition [VLDB’95]

Partition the database into disjoint partitions such that each
partition can be mined in main memory. All the itemsets that
are frequent in at least one partition form the candidate itemsets.

Sampling [VLDB’96]
In the first pass, pick a random sample to compute frequent
itemsets along with a negative border.
In the second pass, generate all frequent itemsets.

BBS (Bit-sliced Bloom-filtered Signature file) [ICDE’02]
In the filter strategy, the candidate patterns are obtained by
scanning BBS instead of the database.
Tuning the size of BBS for optimal performance is critical

6
6

H. Lu/HKUST 11

Vertical Mining
Each itemset is associated with a tid list or tid bitmap

tid list: list of transaction ids containing that itemset
support counting is performed by tid list/bitmap join,
which is more efficient than subset matching

drawbacks:
Constructing and maintaining a large number of tid
list/bitmap
Not scale well with respect to the number of transactions

Optimizations
Tid bitmap compression
Use diffset to reduce size

H. Lu/HKUST 12

Pattern Growth Approach
Basic idea

Grows a frequent itemset from its prefix to avoid candidate generation and test
Using divide-and-conquer methodology

Framework
Find all frequent items in the database, I = {a, b, c, d}
Divide the search space into disjoint sub-spaces:

• Frequent Itemsets containing a
• Frequent itemsets containing b but no a
• Frequent itemsets containing c but no a, b
• Frequent itemsets containing d but no a, b, c

Accordingly, the database is divided into partitions (conditional database) after
removing infrequent items

• All transactions containing a
• All transactions containing b (item a is eliminated)
• All transactions containing c (items a and b are eliminated)
• All transactions containing d (items a, b and c are eliminated)

Mine each conditional database recursively

7
7

H. Lu/HKUST 13

Pattern Growth Approach---Key Factors

Total number of conditional databases
Size of individual conditional database
Conditional database representation format

Tree-based structure: low traversal cost but high construction
cost
Array-based structure: low construction cost but high traversal
cost

Conditional database construction strategy
Physical: expensive but save traversal cost
Pseudo: cheap but incur high traversal cost

Conditional database traversal strategy
Top-down
Bottom-up

Depends on item
search order

H. Lu/HKUST 14

Pattern Growth Algorithms
tree
traversal

ConDB
construction

CondDB
format

item search
order

algorithms

adaptiveadaptiveFP-treedynamic
frequency

CLOSET+

top-downphysicaladaptivedynamic
frequency

AFOPT

top-downpseudoPP-treestatic
lexicographic

PP-mine

bottom-upadaptiveadaptiveadaptiveOP

-pseudohyper-
structure

static
lexicographic

H-mine

bottom-upphysicalFP-treedynamic
frequency

FP-growth

-adaptivearraystatic
lexicographic

Tree
Projection

8
8

H. Lu/HKUST 15

Mining Frequent Closed/Maximal Itemsets

The complete set of frequent itemsets can be very large on
dense datasets

If a length-100 itemset is frequent, then all of its 2100-1
subsets are frequents. Infeasible!

Solution: mining frequent closed/maximal itemsets.
An itemset is closed if all of its supersets are less frequent than
it
An itemset is maximal if none of its supersets is frequent
The number of frequent closed/maximal itemsets can be
substantially smaller than the number of frequent itemsets

AIS Apriori DIC

DHP

Partition

MaxMiner

TreeProjection

FP-growth AFOPT

H-Mine

OP

Eclat VIPER diffEclat

BBS

2001 2002 200320001999199819971996199519941993

DepthProject

MAFIA

A-close

CLOSET

CHARM

ClOSET+

GenMax

SIGMOD VLDB

SIGMOD

SIGMOD

SIGMOD

SIGMOD

SIGMOD

VLDB

KDDKDD

KDD

KDD

KDD

ICDE

ICDE

DMKD

ICDT

SDM

ICDM

2001 2002 200320001999199819971996199519941993

FI
FCI
MFI

Candidate generate-and-test

Pattern growth

ICDM

Vertical mining
Filter-and-refine

Sampling
VLDB

9
9

H. Lu/HKUST 17

Previous work---summary
Candidate generate-and-test algorithms

Scan database multiple times
Generate and test a large number of candidate itemsets

Vertical mining algorithms
Not scalable well with respect to the number of transactions

Pattern growth algorithms
Construct and traverse a large number of conditional databases
Existing algorithms mainly focus on optimizing in-memory
performance

A recent comparative study (FIMI’03 workshop) shows that
few existing algorithms can scale-up to very large databases
with millions of transactions.

H. Lu/HKUST 18

Our Work -- Overview
SSP: a scalable algorithm for mining frequent itemsets from
very large databases with millions of transactions

Partitioning database according to search space
Specially designed for out-of-core mining
Taking memory constraints into consideration in algorithm
design
Managing memory in fully dynamic fashion

CFP-tree: a compact disk-based structure for storing and
querying frequent itemsets

Stores only frequent closed itemsets
Supports three basic types of queries

• Queries with minimum support constraints
• Queries with item constraints

10
10

H. Lu/HKUST 19

Partition Algorithm [VLDB’95]

Basic idea
If we divide the database into several disjoint partitions, then a frequent
itemset must be frequent in at least one partition.

Algorithm
Partition the database into disjoint partitions such that each partition can be
mined in main memory.
All the itemsets that are frequent in at least one partition form the candidate
itemsets. The whole database is scanned to find the exact set of frequent
itemsets

Pros & cons
+ Scan database only twice
- Duplicate computation cost
- It is very hard to accurately estimate the amount of memory consumed by the

mining algorithm when partitioning the database.

H. Lu/HKUST 20

SSP: Search Space based Partitioning

It is based on the pattern growth approach, and partitions the
database according to the search space of the frequent itemset
mining problem.
Different partitions share data but do not share frequent
itemsets.
+ The frequent itemsets mined from each partition are final,

therefore we do not need to scan the whole database to verify
their supports.

+ We need to keep only data in memory.
- The total size of the partitions can be much larger than the size

of the database
Main issue: utilize the data overlap among partitions to reduce
I/O cost.

11
11

H. Lu/HKUST 21

SSP Algorithm---framework
SSP Algorithm (l, Dl, min_sup)
1. Scan Dl to count frequent items, and sort them in descending frequency order,

denoted as F= {a1, a2, …, an}
2. for (every item a ∈F)

Dl∪a = ∅;
3. For (every transaction t ∈ Dl) //construct conditional database

1. Remove infrequent items from t, and sort remaining items according to their
orders in F;

2. Let a be the first item of t, insert t into Dl∪a .
4. for (j=1;j<=n;j++)

1. Output s = l∪aj;
2. SSP(s, Ds, min_sup);
3. for (every transaction t ∈ Ds) //push-right step

1. t = t - {a};
2. Let a' be the first item of t, insert t into Dl∪a’ .

H. Lu/HKUST 22

SSP Algorithm--- Features
item search order: ascending frequency order

The most infrequent item has the largest candidate extension
set, with the increasing of frequency, the number of candidate
extensions decreases

• Balances the size of conditional databases thus ensures that every time a small
conditional database is pushed right

• Balances the size of the sub search spaces thus ensures that the memory
consumption for mining the conditional databases cannot be large

Conditional database representation format: adaptive
Sparse : array
Dense : prefix-trie
Extremely dense: bucket counting

Conditional database construction strategy
Physical construction

12
12

H. Lu/HKUST 23

SSP Algorithm --- Main Issue
A transaction can belong to multiple conditional databases, but at any time
it can belong to one and only one conditional database.

The total size of the conditional database is can be much larger than the original
database. On average, Lavg/2 times larger, where Lavg is the average transaction
length.
The space needed for holding all the conditional databases cannot be larger than
the original database.

If all the conditional databases cannot be held in memory, a transaction
may be write to and read from disk many times, which incurs high I/O
cost.
Main issue: reducing I/O cost by utilizing the transaction sharing among
conditional databases

SSP-naïve
SSP-static
SSP-dynamic

H. Lu/HKUST 24

SSP- Naïve algorithm
It is realistic to assume that a single conditional database and
all its descendant conditional databases can be held in
memory

The amount of main memory available nowadays is very large.
Ascending frequency order: ensures that a single conditional database is much
smaller than the original database, and the size of its descendant conditional
databases also shrinks quickly.
If a single conditional database can fit in memory but there is no enough space
for holding all of its descendant conditional databases, we can use the pseudo-
construction strategy.
If a single conditional database cannot be held in main memory, we can
recursively apply the out-of-core algorithm on the conditional database.

13
13

H. Lu/HKUST 25

SSP- naïve Algorithm

Basic idea:Keep one conditional database in memory
at one time.

When constructing new conditional databases from the
original transaction database, we keep only the first
conditional database in memory and write all the others on
disk.
When the mining on a conditional database in memory is
finished, some of the transactions in it will be written to other
conditional databases.
One optimization is that if a transaction belongs to the next
conditional database to be mined, we keep it in memory.

H. Lu/HKUST 26

SSP- ntatic Algorithm
It is a waste of memory to keep only one conditional database in memory
given the large amount of memory available nowadays.
Solution

keep adjacent conditional databases into memory as more as
possible---How many?

Observation:
If we keep conditional databases Dai+1, …, Dai+m in memory,
the space required for storing these m conditional databases is
smaller than the total size of these m conditional databases
because of transaction sharing.

To accurately calculate the borders between partitions, we use a matrix C,
called differential matrix, to record the differences among conditional
databases.

14
14

H. Lu/HKUST 27

SSP- dynamic Algorithm
SSP-static Algorithm

requires extra I/O cost to partition the database.
uses the total length of the transactions in a conditional
database as the estimation of the size of the conditional
database, which is a a rather loose upper bound when the
conditional database is dense.

SSP-dynamic algorithm
Adopt a lazy writing strategy to fully utilize memory:
writes conditional databases on disk only when new
structures are to be created but there is no memory
available

H. Lu/HKUST 28

SSP-dynamic algorithm
The search space is traversed in depth-first-order, therefore
the exact access order of the conditional databases is known.

put the conditional databases that will be accessed last on disk
to release memory for new data.
Maintain an active stack S to trace the conditional
databases that have not been processed yet at every level.

• Conditional database dumping order: from bottom to top, from right to
left.

It is inefficient to release memory for every transaction to be
inserted.

Solution: estimate the size of memory required for future
mining when releasing memory.

15
15

H. Lu/HKUST 29

SSP Algorithm---Summary
SSP-naïve

Utilizes the overlap between adjacent conditional
databases to reduce I/O cost.

SSP-static
Utilizes the overlap between adjacent partitions to reduce
I/O cost.
Requires an additional database scan to compute
differential matrix

SSP-dynamic
Uses a lazy-writing strategy to guarantee the full
utilization of the memory.
Dynamic in nature

H. Lu/HKUST 30

Experiment Setting
Test environment

1.0GHz Pentium III, 256MB memory
Linux mandrake

Datasets: generated by IBM dataset generator

31.188847061,933,520277MBT30I20D2mN5kP5k

39.958489121,999,994374MBT40I10D2mN10kP10k

61

36

AvgTL

21.82

10.14

MaxTL

9942,719,116223MBT20I15D3mN1kP10k

76924,922,589238MBT10I4D5mN10kP10k

#Item#TranssizeDatasets

16
16

H. Lu/HKUST 31

Minimum Support

10

100

1000

10000

0.008 0.01 0.012 0.014 0.016 0.018 0.02

Ti
m

e(
se

c)

Minimum Support(%)

T10I4D5mN10kP10k

kDCI
SSP-naive
SSP-static

SSP-dynamic

0

500

1000

1500

2000

2500

3000

3500

4000

0.01 0.012 0.014 0.016 0.018

I/O
 c

os
t (

M
B

)

Minimum Support (%)

T10I4D5mN10kP10k

CondDB I/O
DB Scan

1000

10000

0.06 0.08 0.1 0.12 0.14 0.16 0.18

Ti
m

e(
se

c)

Minimum Support(%)

T20I15D3mN1kP10k

kDCI
SSP-naive
SSP-static

SSP-dynamic

0

1000

2000

3000

4000

5000

6000

7000

8000

0.08 0.1 0.12 0.14 0.16

I/O
 c

os
t (

M
B

)

Minimum Support (%)

T20I15D3mN1kP10k

CondDB I/O
DB Scan

H. Lu/HKUST 32

Minimum Support

100

1000

10000

100000

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ti
m

e(
se

c)

Minimum Support(%)

T30I20D2mN5kP5k

kDCI
SSP-naive
SSP-static

SSP-dynamic

0

2000

4000

6000

8000

10000

0.15 0.2 0.25 0.3 0.35

I/O
 c

os
t (

M
B

)

Minimum Support (%)

T30I20D2mN5kP5k

CondDB I/O
DB Scan

100

1000

10000

100000

0.08 0.1 0.12 0.14 0.16 0.18 0.2

Ti
m

e(
se

c)

Minimum Support(%)

T40I10D2mN10kP10k

kDCI
SSP-naive
SSP-static

SSP-dynamic

0

2000

4000

6000

8000

10000

12000

14000

16000

0.1 0.12 0.14 0.16 0.18

I/O
 c

os
t (

M
B

)

Minimum Support (%)

T40I10D2mN10kP10k

CondDB I/O
DB Scan

17
17

H. Lu/HKUST 33

Dataset Generating Parameters

10

100

1000

10000

100000

0 0.5 1 1.5 2 2.5 3 3.5

Ti
m

e(
se

c)

#Transactions (M)

kDCI
SSP-naive
SSP-static

SSP-dynamic

0

2000

4000

6000

8000

10000

12000

14000

0.5 1 1.5 2 2.5 3

I/O
 c

os
t (

M
B

)

#Transactions (M)

CondDB I/O
DB Scan

10

100

1000

10000

100000

0 10 20 30 40 50 60 70

Ti
m

e(
se

c)

Transaction Length

kDCI
SSP-naive
SSP-static

SSP-dynamic

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 20 30 40 50 60

I/O
 c

os
t (

M
B

)

Transaction Length

CondDB I/O
DB Scan

H. Lu/HKUST 34

Dataset Generating Parameters

100

1000

10000

0 5 10 15 20 25 30

Ti
m

e(
se

c)

Pattern Length

kDCI
SSP-naive
SSP-static

SSP-dynamic

0

2000

4000

6000

8000

10000

12000

5 10 15 20 25

I/O
 c

os
t (

M
B

)

#Patterns (k)

CondDB I/O
DB Scan

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25

I/O
 c

os
t (

M
B

)

Pattern Length

CondDB I/O
DB Scan

100

1000

10000

0 5 10 15 20 25 30

Ti
m

e(
se

c)

#Patterns (k)

kDCI
SSP-naive
SSP-static

SSP-dynamic

18
18

H. Lu/HKUST 35

Dataset Generating Parameters

100

1000

10000

0 5 10 15 20 25 30

Ti
m

e(
se

c)

#Items (k)

kDCI
SSP-naive
SSP-static

SSP-dynamic

0

2000

4000

6000

8000

10000

12000

2 5 10 15 20 25

I/O
 c

os
t (

M
B

)

#Items (k)

CondDB I/O
DB Scan

H. Lu/HKUST 36

Memory Size

100

1000

10000

0 50 100 150 200

Ti
m

e(
se

c)

Memory Size (MB)

T30I10DD2.5mN10kP10k

SSP-naive
SSP-static

SSP-dynamic

0

2000

4000

6000

8000

10000

12000

32 64 96 128 160

I/O
 c

os
t (

M
B

)

Memory Size (MB)

T30I10D2.5mN10kP10k

CondDB I/O
DB Scan

19
19

H. Lu/HKUST 37

CFP-Tree---Motivation
Frequent itemset mining

A time-consuming process
• I/O intensive : scan database multiple times
• CPU intensive : count supports for a large number of

itemsets
A repeated process

• Different database and/or applications require different
parameters

• Often no guidelines for choosing proper parameters
Solution: mining once and using many times

CFP-tree: a compact structure for storing and querying
frequent itemsets

H. Lu/HKUST 38

CFP-tree---Overview

A compact structure for storing frequent itemsets
Stores only frequent closed itemsets to reduce tree
size

Supports three basic types of queries
Queries with minimum support constraints

• Find all itemsets with support no less than s%
Queries with item constraints

• Find all frequent itemsets containing items {a1, a2,…am}

Queries with both support and item constraints

20
20

H. Lu/HKUST 39

CFP-tree Structure

Items in a node are sorted in ascending order of their frequencies
An entry stores:

Item id,
Support
A child pointer
A hash bitmap: to indicate whether an item appears in the subtree

Frequent
Closed Itmesets

d:3, p:4, f:5, a:6
pf:3, fa:4, ma:5
fma:3
cpma:3

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5

H. Lu/HKUST 40

CFP-tree---Properties

Apriori Property
The support of entry cannot be greater than its ancestors.

Left Containment Property
The item of an entry E can only appear in the subtrees pointed by
entries before E or in E itself

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5

21
21

H. Lu/HKUST 41

Query With Support Constraint
Find all frequent patterns with support no less than 50%

Apriori property : only entry p and entries after p need to be visited

Frequent Patterns:

{ p } : 4
{ f } : 5
{ f, a } : 4
{ m, a} : 5
{ a } : 6

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5

H. Lu/HKUST 42

Query with Item Constraint
Find all frequent patterns containing item f and p

Left containment property: only p and entries before p need to be visited

Frequent Patterns:

{ p, f } : 3

The corresponding bit of f in the hash bitmap is 0

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5

22
22

H. Lu/HKUST 43

Query with Both Constraints
Find all frequent pattern with support no less than 50% and containing items f
and p

Minimum support constraint : only need to visit entry p, f, m and a
Item constraint: only need to visit entry c, d and p

No pattern satisfies
both constraints

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5

H. Lu/HKUST 44

Construction Algorithm
Pattern growth approach

Construct a conditional database Dp for each frequent
pattern p such that all the patterns with p as prefix can be
mined form Dp
For each conditional database Dp
• First Scan : count frequent items
• Second scan : construct a new conditional database for each frequent item
• Mine each individual conditional database

The original transaction database D can be viewed as the
conditional database of pattern p=∅

Conditional database representation
adaptive

23
23

H. Lu/HKUST 45

Removing Non-closed Patterns

A pattern p is closed iff two conditions hold
There is no previously mined pattern which is a proper superset
of p and has the same support as p.
All the items in Dp has a lower support than p.

Two pruning conditions to save mining cost
If condition 1 does not holds, then none of the patterns mined
from Dp can be closed. (Use CFP-tree to do the checking)
If there exist an item i in Dp such that i appears in every
transaction of Dp, then the patterns containing p but no i can be
ignored. (Easy)

H. Lu/HKUST 46

A Running Example
Count frequent items and create the first CFP-tree node

40%
ID Transactions

1 a, b, c, f, m, p
2 a, d, e, f, g
3 a, b, f, m, n
4 a, c, e, f, m, p
5 d, f, n, p
6 a, c, h, m, p
7 a, d, m, s

ID Transactions

1 c, p, f, m, a
2 d, f, a
3 f, m, a
4 c, p, f, m, a
5 d, p, f
6 c, p, m, a
7 d, m, a

p:3

c:3

p:1

d:3

a:1

m:1

a:2

m:2

f:2 f:1

a:1a:1f:1

m:1

a:1

m:1

f:1

Dc DfDd

Construct conditional databases for frequent items

CFP-tree

c:3 d:3 p:4 f:5 m:5 a:61

24
24

H. Lu/HKUST 47

A Running Example (contd.)
Mine on Dc

CFP-tree

c:3 d:3 p:4 f:5 m:5 a:61

m:3

a:3

3

4

p:32

p is the only child of c, a new node (2) is created as the child of c
m and a have the same support as c, a node (3, 4) is created for each of them

c:3

p:3

a:1

m:1

a:2

m:2

f:2

Dc

a:1

m:1

f:1

Df

p:1

d:3

f:1

a:1a:1f:1

m:1

Dd

Push-right Dc
Mine on Dd, and so on…

Dp

f:35

m:3 a:46

a:37

a:38

H. Lu/HKUST 48

Experiment Setting
Test environment

2.26GHz Pentium IV, 512MB memory
Window XP

Datasets

20.23

74.00

6.53

AvgTL

54

74

164

MaxTL

8876987,13989.57MBT20I10D1000k

211349,04614.75MBPumsb

1657515,59719.20MBBMS-POS

#Item#TranssizeDatasets

BMS-POS is obtained from kdd cup 2000 website, and it contains click-stream data
Pumsb comes from UCI machine learning repository, and it contains census data
T20I10D1000k is generated by IBM synthetic dataset generator

25
25

H. Lu/HKUST 49

Querying Processing Time
Queries with minimum support constraints

BMS-POS (80.7MB) pumsb (142.1MB) T20I10D1000k(199.5MB)

0.01

0.1

1

10

100

1000

0.1 0.15 0.2 0.25 0.3

Ti
m

e(
se

c)

Minimum Support (%)

Dataset: T20I10D1000k (0.05%)

MINE
SCAN

CFP

0.01

0.1

1

10

100

1000

55 60 65 70 75 80 85

Ti
m

e(
se

c)

Minimum Support (%)

Dataset: pumsb (50%)

MINE
SCAN

CFP

0.01

0.1

1

10

100

1000

0.05 0.1 0.15 0.2 0.25

Ti
m

e(
se

c)

Minimum Support (%)

Dataset: BMS-POS (0.02%)

MINE
SCAN

CFP

H. Lu/HKUST 50

Querying Processing Time (contd.)
Queries with item constraints

BMS-POS (80.7MB) pumsb (142.1MB) T20I10D1000k(199.5MB)

0.01

0.1

1

10

100

1000

10000

25 30 35 40 45

Ti
m

e(
se

c)

Item Frequency (x1000)

Dataset: pumsb (50%)

MINE
SCAN

CFP

0.01

0.1

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90

Ti
m

e(
se

c)

Item Frequency (x1000)

Dataset: BMS-POS (0.02%)

MINE
SCAN

CFP

0.01

0.1

1

10

100

1000

0 5 10 15 20 25

Ti
m

e(
se

c)

Item Frequency (x1000)

Dataset: T20I10D1000k (0.05%)

MINE
SCAN

CFP

26
26

H. Lu/HKUST 51

Construction Time
Compare with CLOSET+ algorithm [kdd03]

BMS-POS pumsb T20I10D1000k

0.1

1

10

100

1000

10000

45 50 55 60 65 70 75 80 85 90

Ti
m

e(
se

c)

Minimum Support(%)

Dataset: pumsb

CLOSET+
CFP

10

100

1000

10000

0.02 0.04 0.06 0.08 0.1 0.12

Ti
m

e(
se

c)

Minimum Support(%)

Dataset: BMS-POS

CLOSET+
CFP

10

100

1000

10000

100000

0.05 0.1 0.15 0.2 0.25

Ti
m

e(
se

c)

Minimum Support(%)

Dataset: T20I10D1000k

CLOSET+
CFP

H. Lu/HKUST 52

CFP-tree Size
ALL : all frequent patterns in flat format
CLOSE: frequent closed patterns in flat format
CFP : CFP-tree

BMS-POS pumsb T20I10D1000k

0.1

1

10

100

1000

10000

50 55 60 65 70 75 80 85

S
iz

e(
M

B
)

Minimum Support(%)

Dataset: pumsb

ALL
CLOSED

CFP

1

10

100

1000

0.02 0.04 0.06 0.08 0.1 0.12

Si
ze

(M
B)

Minimum Support(%)

Dataset: BMS-POS

ALL
CLOSED

CFP

0.01

0.1

1

10

100

1000

0.05 0.1 0.15 0.2 0.25

S
iz

e(
M

B
)

Minimum Support(%)

Dataset: T20I10D1000k

ALL
CLOSED

CFP

27
27

H. Lu/HKUST 53

Conclusion

We summarized the approaches in frequent itemset
mining
Mining frequent itemsets from very large
transactional databases: Search space partitioning
To support efficient mining of frequent itemsets with
different support and containing different items: CFP
trees
Mining frquent itemset and itemsets from data
streams – another challenge

