Frequent Itemset Mining Revisited

April 21, 2004

Lu Hongjun , *HKUST* Email: *luhj@cs.ust.hk* URL: *http://www.cs.ust.hk/~luhj*

ttern (Growth .	Algori	thms	
algorithms	item search order	CondDB format	ConDB construction	tree traversal
Tree Projection	static lexicographic	array	adaptive	-
FP-growth	dynamic frequency	FP-tree	physical	bottom-up
H-mine	static lexicographic	hyper- structure	pseudo	-
OP	adaptive	adaptive	adaptive	bottom-up
PP-mine	static lexicographic	PP-tree	pseudo	top-down
AFOPT	dynamic frequency	adaptive	physical	top-down
CLOSET+	dynamic frequency	FP-tree	adaptive	adaptive

30

H. Lu/HKUST

35

Test envir	ronment	N. 510M	D		
• 2.26GI	Hz Pentium I	V, 512M	B memo	ory	
 Windo 	WAP				
Datasets					
Dutusets					
Datasets	size	#Trans	#Item	AvgTL	MaxTL
Datasets BMS-POS	size 19.20MB	#Trans 515,597	#Item 1657	AvgTL 6.53	MaxTL 164
Datasets Datasets BMS-POS Pumsb	size 19.20MB 14.75MB	#Trans 515,597 49,046	#Item 1657 2113	AvgTL 6.53 74.00	MaxTL 164 74

Conclusion

- We summarized the approaches in frequent itemset mining
- Mining frequent itemsets from very large transactional databases: Search space partitioning
- To support efficient mining of frequent itemsets with different support and containing different items: CFP trees
- Mining frquent itemset and itemsets from data streams – another challenge

H. Lu/HKUST