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Reichenbach’s Common Cause Principle:
compact formulation:

No correlation without causation

Explicitly:
If two events A, B are probabilistically correlated, then either there

is a causal connection between A and B that is responsible for the

correlation or there is a third event C, a (Reichenbachian) common

cause which brings about the correlation.




What is Reichenbach’s Common Cause Principle?

e A law of Nature?

e A metaphysical claim about the causal structure of the World?

e A methodological principle guiding scientific research?




Main message of talk:

(Aggressive formulation)

If falsifiability is taken as necessary condition for a claim to be a
law of Nature then Reichenbach’s Common Cause Principle is not a
law because it is not falsifiable




Main message of talk:

(Aggressive formulation)
If falsifiability is taken as necessary condition for a claim to be a
law of Nature then Reichenbach’s Common Cause Principle is not a
law because it is not falsifiable

(Gentle formulation)

It is more difficult to falsify the Common Cause Principle

than one may think




Structure of talk:

Reichenbach’s notion of common cause
Local common cause completeability (notion+proposition)
Common cause completeness (notion+propositions)

Comments on
— common cause completeability of quantum probability spaces

— Common common causes

(blue = on request /if time permits)




Definition:

Reichenbach’s notion of common cause

(S, p) classical probability space

C € S is a common cause of the

correlation
p(ANB) > p(A)p(B)

if




Definition:
The probability space (S, p) is called
common cause incomplete
if it contains a pair of events A, B that are correlated with respect

to p but there is no common cause in S of the correlation

common cause complete (closed)

if it contains a common cause of every correlation it predicts




OT

e There exist trivially common cause complete probability spaces

containing no correlations at all — not interesting

e There exist common cause incomplete probability spaces

Common cause incomplete probability spaces are a
threat for the Common Cause Principle.

Can this threat be met?
4

Can a common cause incomplete probability space be extended in

such a way that the extension contains a common cause of the

correlation?
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Definition:

The probability space (S’,p’) is called an extension of (S, p) if there

exists a Boolean algebra embedding h of S into S’ such that

forall X € §

The embedding homomorphism h takes each correlation in (S, p)
without distortion into a correlation in (S’ p") = it does make
sense to talk about the common cause in &’ of a correlation in (S, p)
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Definition:

(S, p) is called common cause completeable with respect to a

correlated pair A, B (also called locally common cause

completeable) if there exists an extension (S’,p’) of (S, p) such that
the extension contains a common cause of the correlation between

A and B
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Theorem:

Every probability space (S, p) is common cause completeable with

respect to any pair (hence with respect to any finite set) of

correlated events A, B in §
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Significance of Theorem:

It is always possible to defend Reichenbach’s Common Cause

Principle against attempts of falsification by referring to

hidden common causes

not part of the original, common cause incomplete event structure
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We could end here!
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We could end here!
But:
A philosopher very insistent on showing that Reichenbach’s
Common Cause Principle is falsifiable could say this:

Local common cause completeability
does not imply:

There exists a common cause complete extension (S’ p’)

of a common cause incomplete (S,p)
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We could end here!
But:
A philosopher very insistent on showing that Reichenbach’s
Common Cause Principle is falsifiable could say this:

Local common cause completeability
does not imply:

There exists a common cause complete extension (S’ p’)

of a common cause incomplete (S, p)

Problem:

Do common cause complete probability spaces exist?
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Definition:

(S, p) is an atomless probability space if
for A with p(A) > 0
there exists 0 £ B C A
with 0 # p(B) < p(A)

Example: ([0, 1],p) p = Lebesgue measure
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Theorem:

Atomless probability spaces are common cause closed



0¢

Theorem:

Atomless probability spaces are common cause closed

Insistent philosopher:

Not surprising that atomless probability spaces

are common cause closed: they are very large :

e have a continuum number of random events

hence

e highly non-constructive

hence

e are empirically very inaccessible
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Theorem:

Atomless probability spaces are common cause closed

Insistent philosopher:

Not surprising that atomless probability spaces

are common cause closed: they are very large :

e have a continuum number of random events

hence

e highly non-constructive

hence

e are empirically very inaccessible

Insistent philosopher:
Problem
Can finite probability spaces be common cause complete?
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Theorem:

If the Boolean algebra §,, has a finite number of elements then

(Sn,p) is not non-trivially common cause complete

A finite probability space contains more correlations than it can
explain with the help of common causes
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Still:
Insistent Philosopher cannot claim victory:

Reichenbach’s Common Cause Principle:

)

Common causes only for correlations between

causally independent R;,q(A, B) events
U

The definition of common cause closedness is unreasonably strong:

it leaves no room for causal dependence.
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Definition:

(S, p) is causally closed (complete)

with respect to a causal independence relation R;,,q on S

if S contains a common cause of every correlation between elements
A, B such that R;,4(A, B) holds
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Demolishing
Insistent Philosopher:

By making every probability space (S, p)

causally complete
by defining;:
Rina(A, B) holds
whenever A and B are correlated

but there is no common cause of this correlation in S
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Demolishing
Insistent Philosopher:

By making every probability space (S, p)

causally complete
by defining;:
Rina(A, B) holds
whenever A and B are correlated

but there is no common cause of this correlation in S

Too cheap!

We need a disciplined definition of causal independence!
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Intuition: causal independence of A and B should imply that from
the presence or absence of A one should not be able to infer either
the occurrence or non-occurrence of B, and conversely: presence or

absence of B should not entail occurrence or non-occurrence of A.

Definition:

A, B € S are called logically independent if

A¢gB, At¢B , Ag B, Atg¢ B+
B¢A, BtgA , BgAt BtgAat
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Definition:

Two Boolean subalgebras £, L of S are called
logically independent if

any 0 # A € L1 and 0 # B € L5 are logically independent
i.e. if
ANB=#0
for 0 £# A € L, 0=#£Be€ L,
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Definition:

(S, p) is causally closed with respect to

logically independent sub Boolean lattices L1, Lo

if § contains a common cause of every correlation
between A € £ and B € L5
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Theorem:

(S5, py) is non-trivially causally closed with respect to every pair of

logically independent Boolean subalgebras
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Theorem:

(S5, pw) is non-trivially causally closed with respect to every pair of

logically independent Boolean subalgebras

T
Surprising!
Very strong causal completeness !!
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Theorem:

(S5, pw) is non-trivially causally closed with respect to every pair of
logically independent Boolean subalgebras

1
Surprising!
Very strong causal completeness !!

The very strong causal completeness of (Sx, p,) is truly exceptional:

Theorem:

If (S, p) is not (Ss, py) then (S, p) is not non-trivially causally

closed with respect to every pair of logically independent Boolean
subalgebras
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Theorem:

For any n > 5, if §,, is a finite Boolean algebra generated by n
atoms, then there exists a probability measure p on §,, and there
exist two logically independent Boolean subalgebras £1, Lo of S,

such that (S,,,p) is causally closed with respect to (L1, L2).
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Theorem:

For any n > 5, if §,, is a finite Boolean algebra generated by n
atoms, then there exists a probability measure p on §,, and there
exist two logically independent Boolean subalgebras £1, Lo of S,

such that (S,,,p) is causally closed with respect to (L1, L2).

e It is not known how typical or untypical common cause
completeness is (with respect to an R;,q stronger than logical
independence) in finite probability spaces

e There is no straightforward test to tell if a probability space is
causally complete
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Summary of technical claims:
Atomless probability spaces are common cause closed

Finite probability theories may or may not be causally closed
with respect a causal independence relation stronger than

logical independence

Common cause incomplete classical probability spaces (finite or

not) are always common cause completeable with respect to a

fixed, finite set of correlations

Common cause incomplete typical non-commutative
probability spaces are common cause completeable with respect

to all correlations in a fixed state
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Summary of philosophical points:

e One can always defend Reichenbach’s Common Cause Principle

by referring to “hidden” common causes

e One cannot falsify Reichenbach’s Common Cause Principle by
claiming that (reasonably defined) causally closed probabilistic

theories are impossible (mathematically)

e To falsify Reichenbach’s Common Cause Principle one has to
require further conditions on the common causes beyond those
in Reichenbach’s definition of common cause

(e.g. locality )
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At a minimum one can safely claim:

Falsifying Reichenbach’s Common Cause Principle
is indeed more difficult

than one may have thought



